博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
计算几何 - 最近点对 分治法
阅读量:7091 次
发布时间:2019-06-28

本文共 4041 字,大约阅读时间需要 13 分钟。

最近点对

clipboard.png

clipboard.png

clipboard.png

样题 HOJ 1007

题目

Quoit DesignTime Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 41399    Accepted Submission(s): 10779Problem DescriptionHave you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0. InputThe input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0. OutputFor each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.  Sample Input20 01 121 11 13-1.5 00 00 1.50 Sample Output0.710.000.75 AuthorCHEN, Yue SourceZJCPC2004 RecommendJGShining   |   We have carefully selected several similar problems for you:  1006 1009 1005 1008 1004

注意

最近点对是直径,要求的是半径。

浮点型,两位小数。

伪代码

double FindShortPairDC(int left,int right)   //DC代表divide and conquer,分治。 left、right为元素下标 {   if (right - left <= 2) //子集中少于三个点为最小分治状态。如果三个点仍继续递归,会出现一边只有1个点的情况。         return FindShortPair(left, right);   mid = (left+right)/2;   dL = FindShortPairDC(left, mid);   dR = FindShortPairDC(mid+1, right);   d = min(dL, dR)     for (i=mid; i >= left; i--)   {         if(x[mid] - x[i] > d) //横坐标之差            break;         for(j=mid+1;i<=right;i++)         {        if(x[j] - x[mid] > d)         break;         if(temp = dist(i,j),temp < d)           d = temp;           }   }   return d;}

TLE代码

插入排序

#include 
#include
#include
using namespace std;#define min(dL,dR) dL
= left; i--) { if(x[mid] - x[i] > d) //横坐标之差 break; for(j=mid+1;i<=right;i++) { if(x[j] - x[mid] > d) break; if(temp = dist(i,j),temp < d) d = temp; } } return d;}int main(){ int n,i,j; double a,b; //读入点集,并按x坐标进行插入排序 while(scanf("%d",&n),n!=0) { for(i=1;i<=n;i++) { scanf("%lf %lf",&a,&b); //带插入元素 if(i==1){ //没有已排好序的元素 x[1] = a; y[1] = b; } else{ j=i-1; while(j>=1 && a

21457204_1326898064RUxx.jpg

快排

将插入排序改为快排,还是 5000ms,代码如下:

#include 
#include
#include
//#include
//using namespace std;/**算法复杂度常数因子优化1、前期比较距离用平方,最后再开方 2、 **/#define min(dL,dR) dL
= key) high--; x[low] = x[high];/*将比第一个小的移到低端*/ y[low] = y[high]; while(low < high && x[low] <= key) low++; x[high] = x[low]; /*将比第一个大的移到高端*/ y[high] = y[low]; } x[low] = key; /*枢轴记录到位*/ y[low] = keyy; quicksort(left,low-1); quicksort(low+1,right); }}double FindShortPair(int left,int right){ int i,j,flag = 1; double d ,temp; for(i=left;i
= left; i--) { if(x[mid] - x[i] > d) //横坐标之差 break; for(j=mid+1;i<=right;i++) { if(x[j] - x[mid] > d) break; if(temp = sdist(i,j),temp < dd) dd = temp; } } return sqrt(dd);}int main(){ int n,i,j; double a,b; //读入点集,并按x坐标进行插入排序 while(scanf("%d",&n),n!=0) { for(i=1;i<=n;i++) { scanf("%lf %lf",&x[i],&y[i]); //带插入元素 } quicksort(1,n); double d = FindShortPairDC(1,n); printf("%.2lf\n",d/2); } return 0;}

转载地址:http://hoiql.baihongyu.com/

你可能感兴趣的文章
内存堆与栈的区别
查看>>
NHibernate初学者指南(12):日志
查看>>
30 个设计新颖的网站风格展示
查看>>
概念——统一资源定位符(Uniform / Universal Resource Locator,URL)
查看>>
Apache HttpComponents 获取Cookie
查看>>
彻底理解jdbc为什么用反射创建驱动程序对象
查看>>
Oracle内存管理(之五)
查看>>
[nio]dawn的基本概念
查看>>
【数据库摘要】6_Sql_Inner_Join
查看>>
交叉熵代价函数(损失函数)及其求导推导
查看>>
Android UI开源框架
查看>>
Java 构造时成员初始化的陷阱
查看>>
CentOS7.1 Liberty云平台之环境准备(2)
查看>>
js正则表达式test方法、exec方法与字符串search方法区别
查看>>
4.终端
查看>>
优秀的 Spring Cloud 开源软件
查看>>
mysql数据库的简单语句的介绍(1)
查看>>
HDU 2829 Lawrence (斜率DP)
查看>>
visual studio 2012 update3
查看>>
特征值和特征向量的几何意义、计算及其性质
查看>>